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Abstract—We have developed a rigorous full-wave analysis
technique capable of characterizing quasiplanar travelling wave
structures, constituted of multilayer dielectrics and conductors of
finite thickness, also taking into account dielectric and conductor
Iosses. We have studied boxed embedded microstrips and another
complex passive structure, namely the T -gate TW-FET, devoting
particular attention to the distribution of current inside the met-
allization. All structures considered were simulated by means of
a desktop computer. We have tested our program by comparing
our results with experimental data of embedded microstrips and
employed it for the characterization of planar and 7'-type gates
of the FET’s without bias.

]. INTRODUCTION

HE development of monolithic integrated circuits for

millimeter waves (MMIC’s) requires analysis methods
of increasing accuracy and efficiency. In as much as these
features set opposite requirements, an adequate compromise
is usually possible only for relatively simple structures; this
is particularly true for the case of active devices such as the
TW-FET, that is a distributed wideband amplifier, making use
of waves growing along the length of the device. A major
factor in the characterization of this structure are the losses
introduced by the gate electrodes [1]. In fact the gate cross-
section is rather small, causing such high loss as to render
practically impossible to achieve distributed gain by means of
the standard gate MESFET [2].

On the other hand, straightforward widening of the gate is
accompanied by a rapid deterioration of the transconductance,
that is inversely proportional to the electrode width.

Employing a T-gate partly remedies the above drawbacks
by reducing the metal contact with the epitaxial layer on the
one hand, while increasing the conductor section on the other.

As recently shown in [3], [4], the usual perturbation tech-
niques fail in the analysis of structures of this kind; this
happens because the concept of “skin effect” loses its meaning
in situations where both dimensions of the conductor cross-
section are not negligible. Moreover, high losses in the MMIC
structures also have a strong influence on the dispersion
characteristics.

Various rigorous analysis techniques were employed to
study planar structures, such as the FDTD method [5]; the
computational effort involved is, however, considerable, par-
ticularly when dealing with MMIC’s, because of the fine
meshes required.
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Quasi-TEM approaches are analytical and offer a certain
degree of accuracy: models including the active operation of
TW-FET’s where also developed, as in [6] and [7]; unfor-
tunately, the nearly total exclusion of multilayer situations
imposes intolerable constraints on the range of validity of
such approximations.

One of the few alternative approaches to the heavy numer-
ical methods currently in use was proposed by Heinrich in
[3]: it is self consistent and is based on mode matching. Still,
even this approach is practically restricted in application by
the computational complexity of mode matching.

The approach here presented allows a rigorous evaluation
of losses and dispersion characteristics through the solution of
an integral eigenvalue equation.

The latter is obtained by imposing that fields within the
box loaded by lossy dielectrics also satisfy the boundary con-
ditions imposed by the presence of lossy metallizations. The
eigenfunctions of said eigenvalue equation give the current
distributions within the conductors.

This method is as rigorous as that of [3], but with a
considerable degree of added flexibility in as much as the
computational load does not increase proportionally to the
number and complexity of the dielectric and conducting layers.

Comparison of results with existing numerical and experi-
mental data for the microstrip line shows excellent agreement.
We have also investigated by this approach unbiased TW-FET
structures, with standard gate and T'-gate, as proposed in the
literature, taking in account the effect of the depletion region
under the gate and of the highly doped regions required for
ohmic contacts.

II. ANALYSIS

A. Eigenvalue Equation

Let us consider a configuration of N conductors arbitrarily
located within a multilayer dielectric slab. The dielectrics are
characterized by a complex permittivity

.0,
€, = Epi€g —J—.
w
The conductor cross-sections are of fairly arbitrary shape in
principle, even though in the following we shall consider
combinations of rectangles; the structure is enclosed in a metal
box.

The first step consists in replacing the conductors with
distributed currents. We then construct the dyadic Green’s
function (DGF) suitable for distributed current sources, link-
ing the latter to the electric field. Considering the dielectric
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stratification to be in the y-direction, it is expedient to express
the DGF by means of vector potentials oriented along ¥. This
amounts to assuming y as direction of transverse propagation
and reduces the DGF to a form expressible in terms of two
scalar potentials, which, in turn, can be expanded in terms
of the eigenfunctions of a parallel plate waveguide along the
y-direction [8].
Consequently, we write
E(r)=-Z-J(r) (1)
where Z is a dyadic integral operator whose kernel is given by

— jwe(y)Z(r,r)

ce ViV,
= (yy+ 2 )5(r —r')
+ (V x V x S’)(V’ x V' x y)SLSM(r, I‘/)
+ kA(V x 3) (V' x §)SLsp(r,r) (2a)
and
i D, (x, 2)0r (2,2
joely)Susm(e, ) = 3 2EDRE Dy )
2 t1
(2b)
) U, (z,2)¥¥ (', 2
jwpSsm(r,r’) =Y ( )kz ( )ZLSEL(%?J,)'
ti

In the above formula ® are ¥ the LSM and LSE po-
tentials respectively; Yrsym, and Zpgg, are the admittance
and impedance, respectively, of the piecewise homogeneous
transverse line representing LSM and LSE propagation in the
y-direction of the i-th mode of the parallel plate waveguide
formed by the side walls of the box parallel to y. These are
reported in full in Appendix A.

In (1), Z is an integral operator whose kernel is given
by Z of (2a). It is noted that the first term in (2a) gives
two singular contributions, the first being the well known
singularity necessary in order to expand the potentials within
the source region, while the second one can be expressed as

V.V, (x, 7)o,
ti

é

This stems from just the LSM potentials and is nonvanishing
on any y = 1’ plane containing sources. Such a singularity
holds no physical meaning: it is required in order to ensure
continuity of the transverse electric fields that would otherwise
be lost by the presence of a spurious §-function arising from
the double differentiation of Y1gym. In fact, the following
identity holds for the second term in (2a)

(VX VXNV x V' x§)SLsm(r, ')

_ 2 A2 t A2 1
- (Vtay WJ (Vta ' yvﬁ) Foe )

X Z (DL($7Z)@:<($ ’ I) y/). (4)

2
kti

Yism, (¥,

1
The electric field obtained from (1) satisfies all boundary
conditions pertaining to the multilayer diclectric substrate and
to the box, while the sources can be seen as volume currents
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induced by the fields within the strip conductors. Hence, the
presence of the strip conductor s; requires the additional
condition that Ohm’s law be satisfied in it, that is

E(r) = pJ(r) Vre{s:}. Q)

Care must be used if (5) is considered in a region whose losses
are already contained in the DGF (i.e., a lossy dielectric):
in this case the ohmic currents are partially included in (4)
and must be subtracted from (5). This can be accomplished
defining p = 1/{om — 0q) Where oy, is the metal conductivity
and o4 the dielectric conductivity.

The system constituted by (1) and (5), yields the following
integral eigenvalue equation

[Z+pI]-3(xr) =0 Vre{s} (6)

where I is the identity dyadic operator.
The latter can be solved by the Galerkin’s method, by
expanding the unknown current as follows:

N Ngz—1Ny-1

tags
JEY2 (3, y) Z Z Z ijngf_d“’_y) (62)
s=1 =0 =0 s
where
rect;;s(z, y)
) {w<s>z+pm( 5) <z < B+ 1) +pals)
= NI T py(s) SYS R+ D +py(s) - (60)
0 elsewhere

w(s),t(s) are width and thickness respectively of the s-th
strip; p,(s) and p,(s) are the z- and y-locations respectively
of the strip with respect to the origin; N, N, and N, are the
numbers of strips, those of the rectangular sub-domains in x
and y, respectively, in which we have subdivided the strips.
Finally N, is the normalization constant

_ Jw(s)t(s)
N, = NN

A longitudinal dependence of the type e™7* is assumed
throughout.

By an appropriate reordering of the indices, (6a) above can
be written as a single sum. After substituting (6a) in (6) and
by means of scalar multiplication with each basis function in
turn, one recovers the following standard matrix eigenvalue
equation

Z+pl]- X=0 @)

where X is the column vector of the coefficients of the
expansion (6a).

The complex propagation constants -y are then obtained by
imposing the vanishing of the determinant of (7), that is, the
dispersion equation

det[Z + pI] = 0. (®)

Solution of (8) requires employing an algorithm for the
detection of complex roots such as Muller’s algorithm. Once
~ is found, the corresponding eigenvector is recovered from
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Fig. 1. Behavior of the effective dielectric constant and attenuation constant

versus number of expansion functions in the z-direction (we use 5 expansion
functions in the y-direction).
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Fig. 2. Microstrip line cross-section. (1) substrate; (2) dielectric layer; (3)
strip. The structure is enclosed in a large box (not shown).

(7) and the current distribution in the conductors from (6a),
while (1) yields the field distribution everywhere in the box.

The variational property of (8) allows truncation of (6a) after
very few terms, which suggests determining the propagation
constants from a system of small dimensions and subsequently
employing the roots found, in solving (7) with a larger number
of expansion functions, so as to obtain a more accurate
representation of the currents.

In Fig. 1 we report convergent behavior of the effective
dielectric constant and the attenuation constant for increasing
numbers of expanding functions in z(N,,). Similar results are
obtained in the y-direction where NV, < N,

It is noted that the choice (6a) and (6b) is not mandatory
due to the spatial formulation of the problem, it is easy to use
some other basis functions in order to reduce the order of the
matrix problem.

Finally we must mention the main problem related to the
implementation of this method, that was the slow convergence
of some series appearing in the kernel of the DGF (2). In order
to overcome this drawback, we subjected it to considerable
mathematical manipulation, that resulted in great improvement
in computing time. This modified formulation is presented in
Appendix II.

III. RESULTS

A. Microstrip

In order to validate the proposed approach we calculate
the dispersion characteristics of the structure shown in Fig. 2,
comparing them in Fig. 3 with the experimental data reported
in [9]: The open structure simulation was accomplished by
an appropriate choice of box dimensions. It is noted how the
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Fig. 3. ‘Comparison between theoretical and experimental [9] values of
effective dielectric constant e.g and loss o of the microstrip line shown in
Fig. 2. Substrate (1): &, = 12.9, tan§ = 3-10~%; dielectric layer (2): &, =
3.4, tan 6 = 0.05; strip and box conductivity (3): ¢ = 1.77- 107 [Siemens/m].
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Fig. 4. [Effective dielectric constant £.g vrs. metallization thickness of the
microstrip line shown in Fig. 2 and comparison with numerical data reported
in [3]. Substrate (1): &» = 129, tané = 3- 10~%; dielectric layer (2):
er = 3.4, tané = 0.05; strip and box conductivity (3): ¢ = 3.333.
107 [Siemens/m].

present approach accurately describes the decreasing behavior
of e.¢ over a frequency band.

The latter behavior can be attributed to the decreasing
internal inductance of the conductor with increasing frequency,
consistently with the fact that currents tends to redistribute to-
ward the exterior of the conductor, an effect whose description
is beyond the scope of the perturbation approach.

Next, in Figs. 4 and 5, are plotted the effective dielectric
constant e.g and the attenuation « for a structure similar
to that of Fig. 2 but without additional dielectric layer, for
different values of the strip thickness and for two different
frequencies (f = 2, 10 GHz): a comparison with numerical
data reported in [3] shows good agreement. Note that z.g at
2 GHz is always higher than at 10 GHz; moreover, losses
show a local minimum at ¢ = 3§ as observed in [3]. The
same quantities appear in Fig. 6 for two strip thicknesses
(t =1.5, 3 ym) and for varying frequencies. Even in this case,
it is noted that the increment of e.g appearing in the curves
can not be described by means of a standard perturbation
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Fig. 5. Attenuation o versus metallization thickness of microstrip line shown
in Fig. 2 and comparison with numerical data reported in [3]. Substrate (1):
er = 129, tan § = 3- 10~%; dielectric layer (2): & = 3.4, tané = 0.05;
strip and box conductivity (3): ¢ = 3.333. 107 [Siemens/m].
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Fig. 6. Effective dielectric constant e.g and loss a of a microstrip line as
in Fig. 2, but with £, = 1 in (2). Strip and box -conductivity (3): ¢ = 3.0
107 [Siemens/m].

approach. A modified perturbation approach, though allowing
an accurate characterization of the behavior of the attenuation
«, nonetheless does not permit to describe its influence on the
Eeoff- '

As already observed, the present approach provides the
actual current distributions on the strip cross-section. The
behavior of the three components of the current for the
frequency of 10 GHz can be found in Fig. 7(a)—(c). It is seen
that ./, is the main component and that all currents crowd in at
the metal-dielectric interface, particularly in the neighborhood
of the metal corners, even though no edge singularity is now
present.

B. Unbigsed FET-Structure

We report in Fig. 9(a) and 9(b) and Fig. 10(a) and 10(b)
the slow wave factor and the attenuation « of the unbiased
FET structures depicted, respectively, in Figs. 8(a) and 8(b).
In particular, Fig. 8(b) shows the configuration proposed in
[2] featuring a 7-gate electrode, as required in order to
limit the width of the Schottky junction at the gate, while
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Fig. 7.
structure simulated in Fig. 6 with w = 30 pm,

(a) Magnitude of current component J, in the strip conductor of
= 1.5 um, f = 2 GHz. (b)

- Magnitude of current component Jy. (c) Magnitude of current component J ..

keeping its cross-section sufficiently large; Fig. 8(a) shows
the same configuration but with a standard gate instead.
Consequently, the two configurations present in principle the
same transconductance and our purpose is to evaluate the
effect of either choice on the propagation characteristics of
the unbiased configuration.

We consider a self-aligned configuration for the two highly
doped regions to prevent problems of DC dissipation that the
gate-drain distance (100 pm) can cause. These devices are
unbiased; nevertheless we take in to account a depletion region
beneath the gate electrode caused by the Schottky contact: for
this region we assume a depth of about one half of the channel
dimension (d/2).

In order to compute the channel conductivity we used the
doping density proposed in [2] Np = 3- 103 atoms/m?® with
a low-field mobility u, = 8500 cm?/V sec.

We found the three fundamental modes of the structures;
each of them has a current distribution that is approximately
maximum on one of the strips.
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Fig. 8. Standard gate TW-FET w,: 2 pm, wg: 1 pm, wg: 300 pm, dgs:
10 pm, dgq: 100 pem, ¢ 1 pm, h: 30 pm, d: 0.2 pm, substrate: e, = 12.9,
channel conductivity: ¢ = 4.0- 10*[S/m], Strip and box conductivity: ¢ =
3.0- 107 [S/m], highly n-doped regions conductivity: & = 2.010° [S/m]. The
structure is enclosed in a large box, not shown. (b) Cross-section of a TWF
with T-gate, for the dimensions see previous figure; in addition T-gate width:
30 pm.

In the simple gate structure all three modes show slow wave
behavior explicable in terms of two different phenomena.

The gate electrode is insulated from the channel by the
depletion region, giving rise to-a typical MIS (Metal-Insulator-
Semiconductor) configuration: in this case, the spatial dislo-
cation of the electric and magnetic fields produces a shunt
capacitance across the line representation of the gate mode.

For drain and source modes, channel and conductors losses
introduce large series resistance and shunt conductance, due
to the ohmic contacts with the channel region of the drain and
source electrodes. All these phenomena described for the three
modes increase the propagation constant thereby reducing the
wave velocity. Lowering of the internal inductance of the
strips due to skin effect has also same influence in the higher
frequency range, as previously noted.

In the T-gate structure, instead, we observe steeply decreas-
ing gate-mode losses, so that the behavior of Ag/A is the result
of two different effects: on the one hand, the air gap beneath
the 7-bar reduces Ag/)\, whereas on the other hand, lower
conductor losses reduce the negative slope of the curve. The
other two modes are quite similar in both structures.

1V. CONCLUSION

We report a rigorous full-wave analysis of microstrip lines
for MMIC application and unbiased TW-FET structures. This

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 6, JUNE 1995

9T T T T

8 [y —e— Gate mode
——= Source mode

7 E \ —&=— Drain mode

0

2 ei,\ S~ [
< [

5F
0 2 4 6 8 10 12
Frequency [GHz]
@
7-"'}"ﬁ—;-ﬁﬁ!w—r,ﬁ
6 £ Po—
5 —e—Drain mode ]
— E —e— (Gate mode ]
E a4 :
) i ]
B . _
2 : il ]
: e ]
1 i M—_o_—o—' ] ]
0 S B i 1 ) ]
0 2 4 6 8 10 12
Frequency [GHz]

()

Fig. 9. (a) Slow-wave factor of the TWF shown in Fig. 8a. (b) Loss a of
the TWF shown in Fig. 8(a).

is based on replacing metallizations of finite thickness, con-
ductivity and fairly arbitrary cross-section with distributed
equivalent currents and casting the dyadic Green’s function
of a boxed multilayer lossy substrate in a form suitable for
integration over the source region. Application of Ohm’s law
within the metallization results in an eigenvalue equation for
the currents that is solved by Galerkin’s method.

This formulation is particularly suited for layered structures,
as the computational load is independent of the number of
dielectric layers.

- Results are presented for boxed, embedded microstrip,
showing very good agreement with available numerical and
experimental data.

Finally, unbiased TW-FET’s with standard and T-type gates
are also characterized.

APPENDIX A

A. Scalar Dyadic Operators

We report in this section the complete expressions of the
scalar dyadic operators contained in (2); these are obtained by
making recourse to the result

Zrsm(y, y') By0y Yism(y,y')

!
- we(y)e(y)

+ mfs(y —-y).
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In particular, we obtain

7 = U,,(2)T, (')

rr — — (%1)2 __72

2
X [(E) Zrsm, (,y") — v ZvsE, (Z/,y/)}
a .
o Un(2)Pa(a) n TN /
2 ey (7)ot )
Zoy(%,y; 7' ,y') = Zay (', 9/ 2,y)
5 o~ (na\ (1), (2) B, (z)
Za:z = 27 - 2
ot ( a ) (ﬁazr_) __,Yz
X [Zrsm, (0, y') = Zise, (0, 9)]
Zzz(x7y7 x/ayl) = _sz<x/7y/;w7y)

Zoy =

5 = & (2) P (2)
Z. —:L;O————(Mf o

nwy\2
X [(7) Z1se. (. Y) — ¥V Zrsm, (9, 9)

& 8,08,
2= 2 )

Zy(z,y;2",y) = =Zoy (2’0 s 2, )
~ N D (2) P, () [/ 2
Zyy = Z ._()—(___). [(__) —_ ,.y?:! YLSMn (y’y/)

= wre@e(y) [\ a

§(r —1').

By Yism, (¥, 9')

" e ()

In the above formula Y1,gm, and Zpgg, are the scalar Green’s
admittance and impedance of the piecewise homogeneous
transverse line representing LSM and L.SE propagation in the
y-direction of the ¢-th parallel plate mode: referring to the
Fig: 11, a general expression for Z, is given by

Zn(y,y) =
k+ [cos kyZny'_'jZOZ;nYr:{— (0) sin ky2,, y]
n VF(—d)rve (~d) ,
[cos ky1,, (¢ —d) +jz01, Y5 (—d) sin by, (y' —d)] if y > o/
k- [cosky1, (y—d)+3201, Y, (—d)sinky1, (y—d)]
n : Y (0)+Y5 (0)
[coskys, ¥ — j202, Yy (0)sinky:, /] if y </

where k!t and k;; are voltage ratios

0)/V,(—d) when the sources are in reg. 1

V. (—d)/V,(0) when the sources are in reg. 2
that can be calculated from the transmission matrix of the
dielectric stack; Y, and Y, are the LSM or LSE admittances
respectively seen in the upper and lower direction at a given
reference plane whereas zg;, is the characteristic impedance
in the ¢-th region.

Expressions for YLSMi can be obtained by duality.
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Fig. 10. (a) Slow-wave factor of the TWF shown in Fig. 8b. (b) Loss a of
the TWF shown in Fig. 8(b).

APPENDIX B

A. Convergence, Modified Formulation

Some of the series appearing in the kernel of the DGF are
slowly convergent. From a study of their asymptotic behavior,
in fact, it appears that the most critical case arises in the
expansion linking J,, and E, to the remaining components.

Let us consider a conductor of rectangular cross section of
width w and thickness ¢, centred at the origin and, in particular,
that part of F, that is solely due to J,, denoted by E,,. We
have then

1
Eacm(xay):/o dyl

T
dz’ Z.mc(wa Y; x, yl)‘]x<m/7 yl)~
| (B1)
Upon integration by parts with respect to z’, we obtain

t - t
Em(x,y)=/0 dy' P(w,;€,9)10(§,0)| 2 —/0 dy

wlg

X/ da’ Pz, y; 2,y ) 0w Jo (2, ) (B2)

w
2
where

Pz,y;2',y) = /dw' Zww(,y52",Y) (B3)

We now observe that the first term of (B2) vanishes identically
for a perfect conductor located anywhere in the cross-section,
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Fig. 11. Piecewise homogeneous transverse line representing LSM and LSE

propagation in the y-direction of the n-th mode for the scalar Green’s
functions calculation.

for, the condition then holds

()= () =

In the following, we shall assume the vanishing of the first
term in (B2) to hold in any case. Various simulations, effected
without employing the above hypothesis, show that a small
Jz-component is generally present on the sides of the strip
(z = w/2), particularly near the lower corners, i.e. close to
the substrate.

Adoption of (B4), however, does not introduce appreciable
errors in the computation of either the propagation constant (a
variational quantity) or of the current distribution itself, that
is nonvariational.

Upon indefinite integration of E, with respect to z, we
obtain

(B4)

E(r) = -Z- J(r) (BS)
where
~ % fd!lf EI . %333/Jx
E=|""E, i=|" (B6)
E, J,

and the operator Z is the same as Z with the following

substitution

~ 2 ~
%wﬁ%/mzy éuegfmzz B7)
éyw — ——z/dx’ZNW

a

The double integration produces a factor (a/nm)? in Z,
and of (a/nm) in the remaining kernels, thereby enhancing
convergence of the series.

In view of the foregoing modification, we replace in (5)

by the equivalent condition

/da: E.(z,y) = g// da' dy' |z — 2')6(y — ")
strip
X Opr Jo (2, y). (B8b)
The system to be solved is now constituted by (B8b) and (BS5).

éu — ——E/dx'sz.

a
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Some care is necessary in order that condition (B4) be
satisfied by the expansion functions too; a possible expansion
for J, is in term of triangular impulses.

Note that the condition (B4) also acts as an additional
constraint, reducing the number of spurious solutions.
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